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ABSTRACT

Given inflow hydrographs were routed downstream using several different

techniques. The resulting outflow and stage hydrographs were then compared.

The standard for comparison was chosen to be the solution of the one-dimensional

Saint-Venant equations. The approximate techniques considered were the zero-

inertia equations, kinematic-wave model, and Modified-Puls with optional

subdivision of the reach lengths. The effect of floodplains was considered

in contrast to channels of simple cross section. Downstream boundary conditions

consisted of one of the following: normal-depth stage-discharge relation,

broad-crested overflow weir, or free overfall.

Dimensionless graphs of hydrograph-peak attenuation and arrival time as

computed by the various techniques are presented. The accuracy of the approxi-

mate techniques is found to depend on the values of certain dimensionless

parameters. This suggests numerical limits on those parameters for application

of a particular method..

San Francisco, California
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PREFACE

The work reported herein is a product of the Hydrologic Engineering

N Center's continuing effort to improve both the accuracy and efficiency of

techniques used by the Corps of Engineers to route floods through natural

and modified river channels. This research defines the relative performance

of various flood routing methods in channels of relatively simple geometry.

Results were obtained by numerical experiments. Application of the results
Jr

to prototype conditions is demonstrated in a companion report titled "Modified

Puls Routing in Chuquatonchee Creek."
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Comparative Analysis of Flood Routing Methods

1. Introductory summary.

Hydrographs of outflow from a reach of channel with given inflow hydro-

graphs were computed by several different techniques and compared, to discern

their relative accuracy under various conditions. The channel reaches were

prismatic, except for the downstream end. The terminal conditions studied

were (a) indefinite continuation of the given channel, with prescription of

a normal-depth stage-discharge downstream boundary condition for the reach;

(b) a channel obstruction causing backwater, schematicized by a broad-crested

overflow weir; (c) a free overfall, with its critical-depth stage-discharge

relation, schematizing sudden expansion of the given channel into a much

larger waterway. The channel cross sections considered were either simple

rectangles, or composites, composed of a rectangular in-bank portion and a

single, slightly (laterally) sloping, broad flood plain terminating in

vertical bluffs. Flood-plain resistance, characterized by the Manning n,

was generally assumed much larger than that for in-bank flow.

The standard, for comparison with other routing methods, was obtained

by numerical solution of the complete one-dimensional, nonlinear momentum and

mass-conservation equations applied simultaneously to a large number (20) of

subreaches comprising, together, the total reach length. Each subreach was

sufficiently short that curvature of stage and discharge profiles over its

length was negligible. All inflow hydrographs were sufficiently slow rising

to preclude bore formation within the length of channel studied.

Nodified-Puls routing comprised the principal alternate routing technique

studied. Storage-outflow curves were prepared for each channel by integrating,

over the length of the reach, steady-state profiles of cross-sectional area

.".
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computed for a sequence of flow rates. The Modified-Puls method was applied

to the entire reach length, in a single computation for each time step, and

also, for further comparison, to various numbers (2, 4, 10, etc.) of subr~aches,

successively, in a search for an optimum size of subreach for a given time

step. This proved to be unrelated to the travel time through the subreach.

Closest agreement of outflow hydrographs (primarily, peaks) with those of

the standard were achieved when the subreach length was around half the normal

depth under base-flow conditions, divided by the bottom slope.

In apportioning amongst the subreaches the total storage volume computed for

each discharge, the profile of cross-secticTal areas was assumed linear, i.e.,

changes in subreach storage over a time step were assumed proportional to

subreach length. This is exactly true when the downstream boundary condition

for the reach is a normal-depth stage-discharge relation. In this last case,

as the number of subreaches is increased indefinitely, the results of the

Modified-Puls method approach those of a kinematic-wave analysis.

A kinematic-wave analysis results when a stage-discharge relationship

is specified for every station in a channel reach and is introduced into the

continuity equation. The most nearly exact numerical implementation of this

approach utilizes a network of characteristic curves, or simply, characteristics.

A study of these curves showed that kinematic waves can attenuate under

certain conditions. Such attenuation is enhanced by overflow into flood

plains, but can occur even in channels of simple cross section. Attenuation

of hydrograph peaks occurs when kinematic shocks (as distinguished from

bores) are formed in the channel at intersections of the characteristics.

The hydrograph peak is found sometimes to comprise the high side of the kinematic

shock. Shock speed is less than the speed of lower-stage elements in the

. ..-. .

. .. . . ... . .. . . . . . . . . . . . . . . . . . . . .
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trailing limb of the wave. These ultimately overtake the higher stages on

the upstream side of the shock and result in the disappearance of these

* stages from the flood wave (see section 5.4.2).

Intermediate between solution of the complete dynamic equations governing

the flow and the kinematic-wave or Modified-Puls approaches, is the zero-

inertia or equilibrium solution, sometimes called a diffusion technique.

*Here, pressure, weight, and resistance forces are assumed essentially in

equilibrium, so that local and convective accelerations are negligible. In

this formulation, instabilities associated with near-critical flow especially

in irregular channels, play no role, because Froude-number c,,', iderations have

no relevance to the flow equations in this case. Consequently, routine compu-

tation of unsteady flows in rivers and streams by this method may prove more

" trouble free than solution of the complete dynamic equations.

This comparative study was undertaken to find the conditions under which

the simpler routing techniques yield results close to those of the standard

solution, the latter accurate in principle, but complex to program, expensive

to execute, and subject to aborts in the course of routine computation. In

order to establish through a minimum of computational experiments the influence

of channel slope, roughness, cross-sectional configuration, base flow, and

inflow-hydrograph peak and rise time, the pertinent equations and boundary

conditions were expressed in dimensionless form. By this means, the number

of parameters affecting the outflow hydrograph was kept to the minimum possible

without excessively sacrificing the scope of the study.

For a given cross-sectional configuration and downstream control, the

reduction in hydrograph peaks with distance down the channel is governed

primarily by (1) fI:*, a characteristic froude number embodying channel slope,

roughness, and base tlow, (2) tt1  . dimensionless iinflo%,-hydrograph rise time,

0p -"
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and (3) the ratio of peak inflow discharge to base flow. Of lesser

import is the influence of channel length, characterized by its dimensionless

value L*. The attenuation of hydrograph peaks (relative to base flow) with

dimensionless distance as computed by the various techniques is shown in

Figs. 10 to 21, and forms the basis for technique comparisons.

Discharge maximums are plotted in Figs. 10-15, stage maximums in Figs.

16-21, and arrival time of discharge peaks in Figs. 22-27; stage peaks generally

arrive just a little later. The first three figure numbers of each set refer

to the rectangular channel, the last three to the channel with flood plains.

In each set of three the first numbered figure refers to a normal-depth rating

curve downstream, the second to a weir downstream boundary, and the third to

the overfall condition downstream. Each numbered figure (e.g., 10) has lettered

parts (e.g., 10a, 10b, ... ), each referring to a different rise time for the

inflow hydrograph, or in special cases, a different inflow peak.

2. Dimensionless governing equations.

In dimensionless form (see section 5.1) the partial differential equations

of mass and momentum are, respectively,

+A= 0
3x* t*

and

2
2  A A = 0 (2)IF*S* + 2

3t* W x* F K*
D

In this formulation, the reference discharge Q is the base flow, so that Q*,
0

above, represents the multiple of base flow extant at any particular station

and time. I.e., Q* = Q/Q0 ' in which Q is the actual discharge. Ihe quantity

A* is flow area A referred to the product B0Y0, A* = A/B0 YO. The reference

depth Y is chosen normal depth under base-flow conditions; the reference
0

.... .. . . . .. . . . .. ,.... . ... .... .- ..... -....- ...-.. ..-... ...... ..... ....-. "......-..... ... . . .:, 2 .
•  
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breadth B is the top width under normal base-flow conditions. Distance along the

0

channel x is referred to a longitudinal scale X0 characteristic of the channel

under base-flow conditions. Thus x* = x/Xo• in which

Y
X o (3)

0 S
m

0

with S the channel-bottom slope. Similarly, flow time t is referred to a

characteristic time T to yield dimensionless time t* = t/To• in which

X 0Y 0B
T - 00 (4)

The Froude number F* is also characteristic of base-flow conditions and is

defined

2

2 3___ ~
r. = 23()

g B0 Y0

The quantity h* represents dimensionless water-surface elevation, h* = h/YO,

with h the actual, dimensioned, surface elevation.

The last term on the left-hand side of Eq. 2 is the dimensionless

resistance force per unit length. The coefficient K* is given by the formulaD.*2 .R4/3

K A*R* (6)
D

and is seen to be related to the dimensionless conveyance K* = A*R*2 "3. This

follows from the definition of friction slope Sf = Q 2/K2 as the ratio of drag

force per unit length of channel, to stream weight, also per unit length of

channel. In this last expression, K is the (dimensioned) conveyance. In Eq.

6, R*is the dimensionless hydraulic radius

R* A- (7)W*

in which W* is the dimensionless wetted perimeter, W* = W/B0 , with W the

actual, dimensioned, wetted perimeter. The quantity SF*is given by the

equation"

a .--
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2 2

F S 2B 10/3 - A*2(1) R*4/3(1) = K*2(1) (8)B02B Y01-.

uC 00

in which n is the Manning n for the in-bank flow and C is a units coefficient

in the Manning formula (Cu  1.0 m /s in the SI system; C "' 1.486 ft,/sec
u - .I

in the English system). In a channel of rectangular cross section,

S _B0(9)SF* = 1 + 2Ry 9 :i

in which RyB is the aspect ratio Y0/Bo of the rectangle under normal flow

conditions; with a very broad rectangular channel SF* 1, while narrower

channels lead to smaller values of S *. In any event S * is seen to charac-
F F

terize the cross-sectional geometry from the point of view of bed resistance.

For a given configuration of channel cross section, Eqs. 1 and 2 are

seen to contain just one free parameter, F*, embodying the combined influence

of channel slope, roughness, and base flow.

The shape of the channel cross section is specified by a series of

length ratios. A rectangular main-channel cross section is defined by RyB- R'Y-?
the aspect ratio of the rectangle, and by the bank-full depth, relative to

normal depth in the channel at base-flow conditions, R The flood plain,
DY.

if any, is characterized by RFPS, its transverse bottom slope, relative to the

aspect ratio of the main channel, and by RFPB its width, relative to the

width of the main channel. Further, the ratio of flood-plain Manning n to

main-channel Manning n is given by the value Rp. The effect of the differ-
FPN*

ing n values in flood plain and channel was accounted for by evaluating the

conveyance of the entire cross section as the sum of the conveyances of main

channel and flood plain computed separately.

In the given study, the channel cross-sectional geometry was characterized

by the aspect ratio of main-channel depth to width,

RyB 0.1 (10)

. , . .* , • • L , • . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .... . . . .• ".'" ," .'

.. .... •. ...... . . . . . . .. . . . . . . .
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When the effect of floodplains was studied, the values

R Dy = 1.0 (11)

(bank-full depth in ratio to normal depth at the base flow);
R = 0.01 (12)
FPS

(transverse flood-plain slope relative to aspect ratio of main channel);
R = 100 (13)

"FPB
(width of flood plain relative to width of main channel),

R =5 (14)
FPN

(flood-plain Manning n relative to main-channel n)

were assumed, in order to exaggerate these effects.

When the Froude number F* characteristic of a given base flow is very low, -

it can be set to zero in the governing equations. This results in the so-called

zero-inertia model, because all terms involving fluid acceleration are deleted.

If the depth gradient ay/Dx is a very small fraction of the water-surface

slope 3h/3x, or in dimensionless terms, if ay*/ax* << 1, then each cross

section has essentially uniform flow. Then a normal-depth stage-discharge

relation holds for all cross sections, in dimensionless form, Q* = K*/V§-

This, combined with the continuity equation yields a kinematic-wave model.

If flow-area profiles are obtained for a series of steady flows and inte-

grated over reach lengths to yield storage volume as a function of discharge,

and this is combined with the continuity equation, also integrated over reach

length (see section 5.5), the result is a Modified-Puls technique. Evidently,

if the flow-area profiles are obtained under uniform-flow conditions (long

prismatic channel, arbitrary cross-sectional shape), and a sufficiently large

," numher of subreachcs are used, the results of this Modified-Puls technique and

the normal-depth kinematic-wave model must agree.

In order to reduce the number of additional solution-governing variables

- to a minimum, inflow hydrographs were taken of fixed shape, and allowed to

vary only in the ratio Q* of peak discharge to base flow, and in dimensionless

rise time tQ* = tQ1 ,/r , in which tQ1 , is the actual, dimensioned, time to peak.

The form of the hydrograph is the so-called Pearson Type III, which is char-

acterized by the equation

*b. .. . . . . . . . . - . . . . . . .

'-'. . '--'.-' ,'".. . . . . . . . . . . . . . . . . . . . . . . . . ..-."--. '." ,".". .'.':': . ', .. -...--. -. '-- .-". .-.. . . .-... . . -,.-. .-.. . -.- ,
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t*

=tl ( )a a(l -
(15)

in which the coefficient a is related to the skew s of the hydrograph by the

equation

1 (16)

In the studies reported, s was given the constant value

s = 1.2 (17)

The downstream end of the channel, of dimensionless length L* = L/XO,

was characterized by one of three boundary conditions: (a) a normal-depth

stage-discharge relation, in dimensionless terms,

= K *A/VS* (18)
Q D F

(b) a broad-crested weir of dimensionless height p*= p/Y0, leading to the

following dimensionless relation between stage and discharge

Q.2 F.2 3 +2 3.2 -
_Y*_+_ 3 * (19)
2A'2 w 2 2

In the derivation of this relationship (section 5.1.2), the breadth of the channel

end section at elevations greater than the weir crest was assumed equal to that

* at the crest. In the studies reported herein, the dimensionless weir height,

" whenever a downstream weir was postulated, was held constant at

p* = 2.0 (20)

*[ (c) a free overfall with a critical-depth stage-discharge relation, viz.,

= A'/B* (21)

formed the third downstream boundary condition tested.

* 3. Dimensionless parameters governing the outflow hydrograph.

Thus, taking into account both the governing equations and their boundary

conditions, the dimensionless outflow hydrographs are determined once values

* are assigned to IF*, Qp*, tQp*, and L*.

. - ...

'" " "" ' " " "" "" .""'""""- """""" " '""".".%")'.".","-.-.,, -. '."'. .'. " - ""-""" . .*- ", "- "" " " - """. " '"-
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The graphs, Figs. 10 to 27, were prepared by selecting a series of

characteristic Froude numbers IF*

0.1 < F* < 0.8 (22)

and letting the relative time to peak tQp* vary in the range

0.5 < tQ* < 20 (23)

The ratio of peak inflow to base flow Qp was held fixed at

Qp*= 5 (24)

while the dimensionless reach length varied mostly in the range

1 < L* < 4 (25)

L* was held to 1 or 2 with weir or overfall downstream, in order to exag-

gerate their effect.

The significance of these ranges can be seen by noting what they would

mean in dimensional terms if applied to a channel of given cross section. For

a given ratio RYB of channel depth to width under normal conditions, Eqs. 3-S

can (using Eq. 9) be rewritten in the following form

- s/ 5/2"- V/g IF * YO "

Q0 =  (26)

2 2 )4/3g F* n (1 + 2RYB)4
so= 2 1/3 (27)

C YO 
'0

YO4/3 C 2
X = u 0 u

)4/3 122 2 (28)(1 + 2 ' g n F*"

T=Yl/ 0 - 0 29Y S / 6  C u 2.1/

0 I 2R 4/3 g3/2 -3  2 g1/2
,."(1 + 2RYB g .32 g SO IF* i

0

For example, in a channel of rectangular cross section with normal depth

YO = 10 feet, breadth B = 100 feet, and Manning n 0.03, a given choice of
0 0

IF* corresponds to the following values of characteristic time TO, characteristic

distance X0, base flow Q0 9 and bottom slope S0.

.. '.

"" "'"'" °''"'°" '"'-"""-°"- ._ . , "" " "'" ''"" " ""
€ "

"' 
.'' "

•'.,'•'.';.2.'2 " ". . . . . . . .. ". ... ".•.".'..... .".. ."".". .,.".-..... .. ". .. .."'
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Table 1. Example Dimensional Values.

0 0 X0 (miles) Q0 (cfs) so

0.1 20 hrs 24 1,790 0.00008

0.2 2.5 hrs 6.1 3,590 0.0003

0.3 0.74 hrs 2.7 5,380 0.0007

0.4 19 min 1.5 7,180 0.0012

0.5 9.6 min 0.98 8,970 0.0019

0.6 5.5 min 0.68 10,800 0.0028

0.7 3.5 min 0.50 12,600 0.0038

0.8 2.3 min 0.38 14,400 0.0050

Thus, with this channel cross section, a chosen parameter F* = 0.2, tQP =

10 would correspond to a base flow of about 3600 cfs, a peak inflow of 18,000

cfs and a time to peak of about 25 hours. At L* = 4, the outflow hydrograph

would pertain to a station 24.4 miles downstream of the inflow.

4. Analysis of results.

The dimensionless plots of hydrograph peaks shown in Figs. 10 - 27 can

be analyzed from several different points of view. (a) The results of the

complete hydrodynamic model can be viewed as indicating the general behavior

of floodwave speed and attenuation as functions of base-flow and flood-event

characteristics. (b) Results of the simpler models show what stream and

- event parameters appear to affect flood-wave attenuation when certain hydraulic

*phenomena are ignored. (c) Intermodel comparisons shed light on the nature

of some of the simpler models, and (d) delineate useful ranges for application

of such models. The emphasis of the present work is directed to the last two

areas.

'.'...-...... . "•-.,.,-."..- . ...... ".. . .,".".-..-.....•....... .. .. % .. , ... :
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4.1 Floodwave speed and attenuation--an overview.

The accuracy of the complete hydrodynamic model is limited only

by its assumption of one dimensionality, i.e., a level water surface trans-

verse to the flow and an essentially uniform velocity distribution. These

assumptions, while questionable in the event of overbank flow, are well met in

channels of simple cross section. Other errors, stemming from finite computa-

tional time and distance increments or nonhydrostatic pressure distribution are

negligible. Thus the curves do represent the true behavior of flood peaks,

especially in channels of simple section.

It may be possible to derive empirical formulas describing this behavior,

or to generalize it still further by use of appropriate scaling factors for

abscissa and ordinate, but this is not the primary concern here, and was not

attempted.

It is evident, from the curves presented, that attenuation decreases with

increasing base-flow Froude number, regardless of how that is achieved (steeper

slope, smaller roughness, or greater discharge). As expected, attenuation

increases with increasing relative sharpness of the flood wave, i.e., as

inflow-hydrograph rise time decreases or characteristic time increases (see

section 4.4). The rate of attenuation with distance is relatively unaffected

by reach length once it is in excess of some minimum. Of course, attenuation

is greatly enhanced in the event of extensive overbank flooding.

Iith dimensionless rise times in excess of about 10, attenuation is very

sinall in the rectangular channel with normal-depth rating curve at the down-

stream end (Fig. 10). With the weir downstream, similar small attenuation

occurs with rise times perhaps half that size (Fig. 11). The overfall down-

stream causes similar behavior (Fig. 12). With the floodplain, significant

attenuation was achieved at the largest rise time tested, tQp* = 20 (Fig. 13).

% %

.

_ , *,. , .,-2,&.. . , . .. .; . ,,.'.?. ",'_'* .:; .'? . - "* ":, :- .' .,* ",-, . " *- ". ,' :-
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Stage peaks exhibit less attenuation than discharge peaks, especially

with the floodplain. They are less sensitive to Froude number (Figs. 16-21).

The effect of the downstream boundary is to pull up the discharge peaks

at channel end slightly (Figs. 10-15). With normal-depth, and weir rating

curves downstream, peak stages are brought up somewhat, and sharply, respective-

-. ly, near the channel end; the overfall of course produces the opposite effect

(Figs. 16-21).

Speed of propagation of hydrograph peaks remains consistently nearly

equal to the wave speed (Figs. 22-27)

- dQ0  (30)w- A dV
i.e., travel time, tT ' dV (30a)

T dQo

Note the ten-fold larger time scale used in the graphs for the floodplain, to

accommodate the very great dispersal of the wave in this case.

4.2 Flood-wave characteristics as computed with simple models.

The influence of channel bottom slope, roughness, and base flow is

manifested in the dimensionless governing differential equations only through

the base-flow Froude number IF*. In the zero-inertia, kinematic-wave, and

Modified-Puls techniques, with a normal-depth stage-discharge downstream boun-

dary condition, this parameter is totally absent. Thus, hydrograph-peak

attenuation is independent of base-flow Froude number. It is affected only

by the dimensionless inflow hydrograph, as characterized by peak and rise

time. Speed of propagation in the kinematic-wave or Modified-Puls method is

independent of both the Froude number and the inflow hydrograph rise time.

In the Modified-Puls technique, base-flow Froude number plays a small

role with weir and free-overfall downstream boundary conditions, because it

affects, somewhat, the shapes of the succession of steady-flow profiles from

which storage-outflow curves are drawn.

."

. ... . .
. * %.•-
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With a normal-depth downstream boundary condition, the kinematic-wave

and Modified-Puls approaches yield attenuation with distance from the upstream

* end, independent of total reach length. In other words, the wave behavior at

any point is governed solely by conditions upstream from that point.

With the weir or free-overfall downstream boundary conditions, as the

* channel becomes very long, it begins to behave like one with a normal-depth

downstream boundary condition.

4.3 The Modified-Puls method in the light of kinematic-wave theory.

All of the flood-routing techniques studied involve numerical inte-

gration or differentiation over finite increments of distance or time, or

both. Generally speaking, the smaller are these increments, the more accurate

are the results. Furthermore, as step sizes are reduced, the results approach

limiting values; further reductions in step size lead to no further significant

changes in results. At such time, it can be said that the results reflect

the basic assumptions of the technique, rather than the numerical accuracy

with which that technique is carried out. In the studies described, step

sizes were indeed reduced to the point that the results became, for practical

purposes, independent of step size.

The one exception to this general rule was seen with the Modified-Puls

method. At its foundation, the Modified-Puls technique differs from the

others, in that in concept it is based on a presupposed relation between

storage in a finite, perhaps very long, reach and the outflow from the down-

stream end of that reach. All of the other techniques have as a basis, some

given relationship between depth and discharge variations locally. This can

be expressed algebraically, if depth and discharge profile shapes, say straight

lines, are assumed over a short span (as in sections 5.1-5.3). The total

reach length of interest and total time of interest are covered by simultaneous

or sequential solution of the algebraic equations written for each sub-span.

S...................-... .......................... ....... . . .
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As stated, the smaller are the sub-spans, the more nearly are the actual pro-

files linear over a sub-span, and the more accurate are the solutions of the

governing algebraic equations.

The Modified-Puls method is like this in time only. And as the time step

is reduced, the calculated hydrographs rapidly approach a limit; this is

essentially what appears in the plots presented. In a variation of the

Modified-Puls method tested in this study, however, storage-outflow relations

were prepared for sub-reaches of the main reach by apportioning the total

* volume in the channel, computed for each steady-state discharge, equally

amongst the subreaches. Thus each subreach is provided with a storage-outflow

relation.

In one sense, the computed storage is prism storage only, because it is

, assumed to depend on outflow only, rather than upon inflow also, as in the

case of wedge and prism storage. On the other hand, because the steady-state

profiles which are integrated to yield the storage values are not necessarily

- profiles of uniform flow--note the varied-flow profiles behind the weir (Ml)

(Figs. la,b) and overfall (M2) (Fig. lc)--the water volumes computed are not

really prismatic in shape. Still, a rapidly rising floodwave, in a channel

of finite cross-sectional proportions, would yield an additional wedge compo-

nent not computed in the given variant of Modified-Puls. In reservoir routing,

for which the technique originated, the pool, of course, remains essentially

" level during passage of floods and prism storage of the type computed is all

that, in fact, exists. This is the situation approached in the flood flow

- behind weir and overfall, especially for the slowly rising inflow hydrographs.

In any event, as the number of sub-reaches is increased, it is evident

that the channel is ever more nearly being provided with cross-sectional area

.. vs. discharge, Q(A), relationships for a series of stations along the channel,

,, ~* . . . . - - - - - - - -- - - - - - -
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leading thereby to a kinematic-wave analysis (section 5.4). Indeed the

resulting behavior of hydrograph peaks more and more nearly approaches the

results of a pure kinematic-wave analysis. In fact computed attenuation of

the wave can be reduced to any amount desired (presumably up to that dictated

by the formation of kinematic shocks--see section 5.4.2) by a suitable choice

of sub-reach length.

An examination of the peak-attenuation curves shows that, empirically,

there appears to be a dimensionless sub-reach length 6x*, that yields an

attenuation closest to that of the standard, as given by the complete

hydrodynamic model. This "optimum" value is generally in the range

0.3 < 6Xo < 1.0 (31)

The reader is cautioned that this information is strictly empirical; no

theoretical basis has been found for the existence of such an "optimal" value.

Nothing can be said about 5x*for conditions outside of those tested.
0

Apart from these purely empirical considerations, theoretical questions

arise: (a) does decreasing sub-reach length in the Modified-Puls method

yield more accurate results, and (b) does decreasing sub-reach length yield

results more nearly in accord with the basic assumptions of the Modified-Puls

method. The answer to both questions, in general, is: no. For if one were

to apply this sub-reach volume apportionment to the case of a real, large

reservoir, which maintained a truly level surface during passage of a flood,

the computed attenuation would be smaller than the true one, the difference

being greater as the number of subreaches increased (and as the rise time

decreased). The true attenuation would hc computed in this case by the

" Modified-Puls method with x equal to the entire reservoir length.

Furthermore, decreasing sub-reach length doesn't necessarily reflect the

basic assumptions of the Modified-Puls method more closely. The key assump-

tion in this method is the existence of a known relationship between storage in

.. ".

4::::::: ::::: ::, : :"-,:::-:: :i., -"i:4 :::: ,::::: .:..:.: :. . ..:.: . . . , . , , , . ,:...:...:.-.:- ........... ,..: -.- v .. _.:
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a reach (or subreach) and discharge at the end of that reach (or subreach).

The given method of apportioning storage amongst subreaches gives a relation-

ship between storage in a subreach and discharge, not at the end of that

subreach, but at the end of the entire reach. Except for floods that rise so

slowly (say, tQp* > 20) that the flow in the entire reach can be viewed as a

succession of steady states, discharge is not the same at all stations, and

so the storage-discharge relation postulated for the subreaches will be in

error. Only if the flow i5 locally controlled, say essentially at normal

depth for the local discharge, will the storage-discharge relation be correct

for the subreaches, i.e., within the context of the Modified-Puls assumptions.

In that case, the flow conditions satisfy the key assumption of the kinematic-

wave procedure, namely, there is a (known) stage-discharge relationship at

each cross section. Consequently, there is no attenuation other than that

engendered by formation of kinematic shocks, and the Modified-Puls method

would yield the most accurate results with the largest number of subreaches

(because only prism storage is accounted for, even 99 subreaches, the largest

number that could be handled by the present computer programming, were insuf-

ficient to mimic exactly the results of true kinematic-wave analysis [see

c.g., Fig. 13d)). Thus, subdivision of the reach reduces the inevitable

a'jttenuation that occurs with the Modified-Puls method.

In conclusion, the following may be stated about the Modified-Puls

method and apportioning of steady-state varied-flow-profile storage to sub-

reaches. For flow that is heavily controlled from downstream, in the limit

a large reservoir with outflow, Modified-Puls should work well with the full]

length of the reach used, %sithout stibdivision. For flo that is controlled

locally (e.g., depth gradient negligihlc), if Modif ed-Piuls is to be used,

the larger the number of subdivisions the hetter. 1 0r t he flo in this case 

.. . . . ... . .. -. - ... ... .. .. -.... -.. ......... . . . . .
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would be truly modeled by kinematic-wave analysis, and this is approached

by Modified-Puls with a very large number of subdivisions.

In most cases, even without a controlling hydraulic structure downstream,

simply with so-called friction control, a normal-depth downstream boundary

condition, the relation between depth and discharge at a given section depends

upon conditions in neighboring portions of the channel. Neither kinematic-wave

nor Modified-Puls basic assumptions are satisfied. As mentioned earlier,

empirical evidence shows that the Modified-Puls method with the reach sub-

divided can yield attenuation of flood-wave peaks close to that observed.

4.4 Intermodel comparisons.

In interpreting the peak-attenuation curves, the significance of

*. the dimensionless parameters should not be overlooked. The characteristic

distance and time to which real distance and time are referred to yield their

dimensionless counterparts are defined by Eqs. 3 and 4 in section 3; the char-

acteristic Froude number is defined by Eq. 5. These variables are viewed again ..

in Eqs. 26- 29. It is seen, for example, through combination of Eqs. 27 and

29, that

Y 12

0
TO 0 112 O .(32) '

Thus, the steepness of a channel is manifested in these curves not only in

the Froude number of flow, but in the characteristic time and distance as well.

* A given real time of rise has, typically, a larger tQp* in a steep channel,

than a flat one.

An overview of the figures suggests that for a given channel geometry,

the most significant parameter affecting the behavior of a flood wave, or

the accuracy of its computation by one or another method, is the dimensionless
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rise time tQ*, and when this is small, IF* as well. The ratio of peak

discharge to base flow is distinctly of secondary importance. In addition

to the evidence offered by comparison, for example, of Figs. 13d and 13g,

the following approximate analysis is helpful in explanation. In a channel

of broad rectangular cross section, the characteristic depth is given by

q0 nl 3/5

in which q0 is the base flow per unit width of channel. In accord with Eqs.

3 - 5, the remaining characteristic parameters are

0o 13/10

0
1/ 5  nUj "

TO = 81/5-

1/1 9/10

q_/___0IF* g / -

IF 12 n/C

For a given peak flood discharge, doubling the base flow would change tQp*

by only 15% and the Froude number by but 7%. Even a 10-fold increase in

base flow decreases tqp* by just over one third (37%), and increases F* by

only 20%. While L* is inversely proportional to the 3/5 power of base flow,

dimensionless reach length, as discussed previously, is not a very important

factor.

In the channel with floodplains, the effect of characteristic Froude

number iF* was seen to be negligible; in the rectangular channel F* played a

significant role only for tQ* < 2. The range of base-flow Froude numbers for

........................... .................. ............. .. . .
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which the zero-inertia model yields useful results increases as the time to

peak of the inflow hydrograph increases. As evident in Fig. 10, with tQp* .

K. 0.5, the zero-inertia model yields good accuracy for F* < 0.2; at tQp* = 1.0,

the same accuracy is achieved at F* < 0.3; at tQp* = 2.0, all F* < 0.4 yield

!* good results with the zero-inertia model. Figure 13 shows that in the channel

with a flood plain, zero-inertia analysis was suitable for all flows with

* F* less than 0.5 at least.

The "optimum" 6x* for application of the Modified-Puls method varied

" somewhat with the nature of the channel cross section, the downstream boundary

condition, and the inflow hydrograph rise time. The discharge-attenuation

*" curves with Modified Puls do not always follow, exactly, the trend of the

. hydrodynamic solutions. Thus, selection of an optimum 6x* emphasizes the

value of hydrograph peak at the end of the channel reach.

Figures 10 and 13 show that with a normal-depth downstream boundary

condition, Sx * 5 0.35 with a floodplain, and perhaps twice that value in
0

the rectangular channel. With the weir downstream boundary (Figs. 11, 14),
6xo* 9 0.4 - 0.5 with the floodplain, and 0.7 < 6x* < 1.0 in the rectangular

0 0

channel, the larger values appropriate to rise times greater than about unity.

With a floodplain and the overfall downstream, 6x * lay between about 0.22 -
0

0.30, the larger values pertinent by and large to the larger rise times

(Fig. 15). In the rectangular channel 6x * is around 0.33 - 0.5 for tQp*
0

0.5 and increases to 0.7 for tQp* = 1.0. At tQp* = 2.0, 6x* _0.5 to model

1F* = 0.2, and 6xo * = 1.0 to represent F* = 0.5 well. At tQp* = 5.0, there
0

is very little attenuation, and 6x * = 1.0 worked well for both Froude

numbers. S,

. . ........... *....... .... .............,........,...-...............
- -. --. PK..• .rV * - .i" .' . .' i l I l * *. . . . i I . ./
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An examination of the attenuation of stage peaks (Figs. 16-21) shows, J
first, that stage attenuation is far smaller than discharge attenuation.

Second, it is much less sensitive to Froude number, and finally, it is

less sensitive to choice of 6x* in the Modified-Puls method.

Time of arrival (Figs. 22-27) is relatively uninfluenced by 6x*, provided

only that the latter is less than about 2. A value of 6x* = 0.5 leads to

close approximation of the travel time in most cases.

An overview of Figs. 10-15 explains the mixed success with which the

Modified-Puls method is used in practice. In floods without overbank flow

a small dimensionless rise time (t. * < 2) leads to true attenuation
P

dependent upon normal Froude number IF*. The band of correct solutions

Qn* (x*,tQp*,F* .... ) gets narrower and narrower with increasing tQp*, so

that with tQp* > 5, attenuation is virtually independent of F* (as well as

very small). The hand of solutions Qm h* (x*,tQp*,6x*,...), showing attenua-

tion computed by the Modified Puls method, is more spread out with various

-X' "it tQ,* 1.0 than at tQp* = 0.5. But then, with further increases in

tQp*, the dependence upon 6x* diminishes, and the band of solutions gets

narrower and narrower, squeezed mostly into the ever smaller region between

the correct attenuation curve and zero attenuation. At small tQp*, then, a

choice of 6x* can be made with the Modified Puls method that will reflect

correct attenuation for the given Froude number. At large tQp*, the (very

small) attenuation can be computed with little regard for 6x*.

With overbank flooding, these circumstances with regard to 6x* are

r somewhat exaggerated. The influence of IF* upon the true solution is negligible,

especially with a normal-depth rating curve downstream. However, at small

tQp* the influence of 6x* in the Modified Puls method is also minimal. The

width of the solution band QmMp* (x*,tQp*,6x* ... ) is still very narrow at

Sp* < 1. In this range Modified Puls can work very well without careful

,' '

*.. *.". .
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choice of 6x*. As tQp* increases, band width increases--without limit at

least to tQ* = 20 with the normal-depth downstream rating curve. In this

range, successful use of Modified Puls requires a good choice for 6x*. Under

the conditions tested, this appears to be about 6xo* 0 0.35 (0.25 for the

overfall downstream). However, because the observed close correlation

between the true physical attenuation and the computed mathematical attenuation

of the Modified Puls method is entirely empirical, it may well fail to

persist under different conditions. Optimal values of 6x0 * may well be dif-

ferent. The influence of Q * and L* appears to be minimal, but other,
p

geometric, factors may play a role.

With very large dimensionless rise times (tQ * > 20), at least with

* weir or overfall downstream rating curves, the very small attenuation again

compresses the Modified-Puls-solution band width, so that successful compu-

tation can be performed without much regard for the size of 6x*.

4.5 Sample application.

The user contemplates routing a hydrograph peak of 24,000 cfs,

over a reach of 60 miles down a river in which the base-flow prior to the

flood is Q0 1400 cfs. The inflow hydrograph rises to its peak value in

about 2 1/2 days. The average slope of the channel is 0.5 feet per mile.

The river channel, approximated by a rectangle, is 300 feet across and 6 feet

deep when bank full. Overflow spills into the floodplains, sloping laterally

at approximately 1 foot per mile. Manning n in the floodplains is estimated

at 0.05.

At the flow of 1400 cfs, the average depth is 5 feet. The Manning n for

the main channel is evidently n = 0.044. Froude number of the base flow,

assuming normal depth, is U0 = 0.07.

0o
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The characteristic distance is (Eq. 3) X0 = 52,800 = 10 miles; character-

istic time is (Eq. 4) To = 56,571 sec 15.71 hours; dimensionless time to

peak is tQp* = 2.5 * 24/15.71 = 3.82.

Examination of Figs. lOc and lOd, for channels of aspect ratio 0.1 (as

oposed to the given channel of about 0.02, or less when the flood plains are

inundated), and tQp* = 2 and 5 respectively (as opposed to 3.82 in the given

case) suggests that the zero-inertia model would be entirely accurate, and

that the kinematic-wave model would be grossly inaccurate. Modified-Puls

with distance steps of about 10 miles may yield adequate outflow discharge

peaks. Figures 13c and d, depicting similar rise times in a channel with

floodplains, also show that the zero-inertia model should give excellent

-esults. With the Modified-Puls method, dimensionless distance steps of

about 0.3, i.e., steps of about 3 miles, would appear to give adequate results.

It is difficult to estimate a suitable distance step for this method.

Figure 2 shows computed peaks obtained for the given case by way of the

Saint-Venant equations, the zero-inertia model, and Modified Puls with

distance steps of 3, 5, and 10 miles, supporting the predictions made. The

zero-inertia model is seen to give results virtually identical to those of

the complete hydrodynamic model, as expected. The Modified-Puls method

gives reasonably good results with an appropriate choice of distance step,

but it is difficult to predict that optimum size.

4.6 Conclusions.

The actual passage of a natural flood down a river is governed

by the complete hydrodynamic equations of flow, i.e., the one-dimensional

Saint-Venant equations of continuity arid motion. Additionally, two-dimensional

tens and equations may be needed to describe greatly different flow parameters

in main channel and floodplains or gradual lateral inundation of the floodplains,

V.... . . . . . . . . ... . . . . . . . . . . .--.. *
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rather than the instantaneous flooding implied by the laterally horizontal

free surface assumed in the one-dimensional model.

Any physically based routing model takes cognizance of these equations,

"* either directly or indirectly. In the present study, two-dimensional effects

have been ignored, and the one-dimensional equations of Saint-Venant have been

* assumed adequately to represent the physical circumstances. Solutions of

these equations are hence taken as standards, against which other models can

be measured.

The zero-inertia model is seen in many cases to yield results very

close to those of the standard. The graphs of Figs. 10-15 show that only

at relatively small values of dimensionless rise time, say tQp* < 2, is the

steady-state base-flow normal-depth Froude number a significant variable.

And even then, if it is low, the zero-inertia model will yield satisfactory

results.

The kinematic-wave model with a normal-depth stage-discharge relationship

postulated at all stations has deleted from the motion equation not only the

acceleration terms, but also the effect of the depth gradient. Despite the

incidence of kinematic shocks, which can cause a predicted flood-peak sub-

* sidence, in the natural floods studied, only those floods with dimensionless

rise times in excess of about 10, which exhibit practically no subsidence,

are well modelled by kinematic-wave theory. This limit applies only to the

channel without floodplains; in the opposite case, even with a rise time of

20, the largest tested with a normal-depth rating curve downstream, subsidence

-* was substantially greater than that predicted by kinematic-wave analysis. The

reader is reminded that large dimensionless rise times are typically associated

* with smooth, steep channels with large base-flow Froude numbers (see the

. second of Eqs. 29).

* *... .. %o~ . .* .. .. .. .. .. .. 1
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The Modified-Puls method is often characterized as one utilizing the

continuity equation alone, but it too is dependent in one way or another

upon the equation(s) of motion as well. The storage-outflow relation used

in conjunction with the inflow-outflow-storage-rate equation (continuity),

whether obtained empirically from past flood events, or hypothetically from

steady-flow backwater curves, contains inherently one or another dynamic

relationship. The empirical relation contains all the terms of the complete

Saint-Venant equations in the proportions in which they existed for that

particular event. The hypothetical ones reflect only those terms which

were retained for the analysis.

The Modified-Puls method based upon an empirically derived storage-

outflow relationship, stemming from actual past flood events in the given

reach, can yield results superior to the variant, based on steady-state

profiles for various discharge rates, tested here. In this latter case,

the storage-outflow curve for a real flood event will agree with the hypo-

thetical one only if the contribution of the unsteadiness of the flow to

DV/at, VaV/Dx, and y/3x is very small, compared to the contribution to the

last two terms by the nonuniformity of the flow. Such is evidently the case

" with short channels and a weir or free-overfall downstream boundary condition,

* especially for a flood event with a large rise time. Empirically gathered

data, on the other hand, yield a storage-outflow relationship that is ab-

solutely correct, for that particular event. Provided the various terms

* in the motion equation retain about the same values each time a given outflow

from the reach is attained, the storage-outflow relation will remain unchanged.

' Once measured, it can be used confidently for all future floods of that

magnitude, the Modified-Puls method applied, furthermore, to the full length

*. of the reach, without subdivision into subreaches.

.r .E -2.
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With the storage-outflow relationship obtained theoretically through

a succession of steady-state profiles, the Modified-Puls method can yield

reasonably good results with an appropriate choice of distance step, but it

is difficult to predict that optimum size. The difficulty arises because

there is no rational correlation between the mathematical attenuation of

the ".1odified-Puls method, and the physical attenuation predicted by the

hydrodynamic or zero-inertia models. The former is a continuous function of

distance-step (sub-reach) size, while the latter is independent of step size,

- once this is small enough to make truncation errors insignificant.

As regards arrival time of the flood peak, the correct value, given by

solution of the Saint-Venant equations, is considerably greater than that

* based on the celerity of an infinitessimal gravity wave, as computed by the

* same equations, c = vrgA/B. Solution of the zero-inertia equations leads

in most cases, as indicated, also to the correct value of arrival time, in

contrast to the instantaneous arrival of an infinitessimal wave predicted

by this model. Kinematic-wave theory leads, on the other hand, to about

the correct arrival time independent of wave height. The Modified-Puls

*. method as described, predicts relatively small arrival times. In the case

of the channel with floodplains, with no subdivision of the reach (N = 1),

even when Qmax was predicted with fair accuracy, the time of arrival of the

*[ peak was very, very early, with up to 90% error. The predicted time of

arrival gradually approaches the correct value as the number of subreaches

is increased, with good results generally obtained at 6x* = 0.5.

... ... . ..',. '.'../.**:~* .. . ...
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5. Derivation of the governing equations.

5.1 Complete one-dimensional hydrodynamic equations.

5.1.1 Equations governing flow in a subreach.

Although the present study excluded nonprismatic channels

• and tributary inflows, the governing equations are derived, for completeness,

* with these features included.

The physical principles of mass and momentum conservation are expressed

for a subreach of small (not necessarily infinitessimal) length 6x. With

reference to Fig. 3, conditions pertinent to the left-hand cross section

at some time t are subscripted L, those for the right-hand cross section at

the same time are subscripted R. At a time slightly earlier than t (t - 6t

. with 6t small, not necessarily infinitessimal) the left and right stations

are subscripted J and M, respectively. If Sx is sufficiently small, then

over that span, the water-surface profile can be assumed straight, as can the

variation of the cross-sectional area, with distance.

. ,. .. . .o
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Fig. 3. Elementary water volume.

Expression of mass conservation for a fluid of negligible compressibility

contained between the given left and right cross sections is

0 L Q + qR x) + (1 - 0)(Q - Q + qJ x)] 6 t

IiR (. ; x (33)

Q is channel discharge, q is lateral (tributary) inflow per unit length, and

A is cross-sectional area. Provided that discharge is assumed to vary linearly

with time over the interval 6t, the weighting factor 0 should, for precision,

equal one half. The stability of the numerical scheme which expresses mass

and momentum conservation over large times and distances, however, requires

0 > 1/2. In computations it is set as close to 1/2 as will yield relatively

.- l
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smooth hydrographs and profiles, but never exceeds unity. In the present

study, except as noted, this weighting factor was held constant at

0 = 0.6 (34)

i The double subscript LR refers to the average value taken over the length of

*" the increment 6x, at time t, while JM corresponds to the average value at

t - 6t.

Momentum conservation, or more properly an impulse-momenttum relationship,

can be written for the same changing volume of water over the same period of

time, as follows.

[ P L x P Q2 qR21 IAL+AR

t(YPL +RxLR P L ULR LR 6x 2AR 2 zOL ZOR)
!F2

LR6x) + (I )(YPJ + RxjM 6x - PM] + P[ AJ  + UJM qJM 6x

i- Aj + AM  x QL QR QJ + QM}"+ - D 6 6t : P 6x (35)
.. 2 (zOL- zOR) - DM X f 2 2 .

The hydrostatic pressure force on a cross section is given by yP, in

which

y
P J(y {- ni) B(n,x)dn (36)

0

with B the breadth of the channel at any elevation n above bottom. In a pris-

matic channel, the dependence of B on x vanishes. In a nonprismatic channel,

the pressures on the sidewalls have a component in the direction of flow

y R 6x, in which
x

y

R (• 3B (-x) d (37)4
0

- """ " " .... . . ..,.,. ..- .
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Accordingly,
-p A ay6 X(8

P(x) + R 6x- P(x +6x) =(R - - 6x = x (38)"x xx

. The bar over a variable implies an average value over the length 6x.

The net pressure and weight forces can evidently be combined into a single

term involving the longitudinal change in water-surface elevation, e.g.,

A A A

AL R + R - = + L A R
yP +XLR x-P 2 (zOL ZOr)L 2 (hL - hR) (39)

2
The momentum flux pQ /A is computed on the assumption that the flow is

distributed uniformly over the entire cross section, flood plains included.

The momentum flux entering the volume element with tributary inflow is assumed

distributed over the length of the element 6x; the volumetric inflow rate is

q per unit length of channel, and the momentum brought in thereby per unit

volume is pu, with u the longitudinal component of velocity possessed by the %

tributary inflow. The momentiun content, per unit length, of the volume

element lying between the given cross sections, is the mass of the element

per unit length, oA, multiplied by the momentum per unit mass V, i.e., pQ;

consequently the momentum content of the element at any time is pQ 6x.

The average drag of the channel walls over the length 6x is given by

y - - -ia (40)
KD

in which 1/K 2is a drag coefficient dependent upon the cross-sectional flow

geometry and roughness of the bed. It is related to the conveyance K of the

channel, as follows

K =K /A A C R 41)

* in which R is the hydraulic radius, and the Chezy Ch is given by the Manning

formu la

ii::: : !.:K... . . . . . . . . . . . . . . . . . . . .... . . . .:: .: . . .: ."." ::. . ... ".::::::. ::"" ": . ..
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_ Cu R 1/6 (42)Ch n

with C a units coefficient: C = 1.0 M /S
u U

in the metric system; C 1.486 ft /sec in the English system. In a composite

cross section, K is assumed the sum of the individual conveyances of the main

channel and flood plains.

With Eqs. 39 and 40 in force and following division by y6t (6t in the

case of Eq. 33), Eqs. 33 and 35 can be written

A L + A R
e(QL - QR + qLR 6x) + (I - 0)(Qj -M + qJM 6x) (

Aji + AM 6x

S2 / 6t (43)

2 2-

A> L + AR i L Q

S(hL hR) + g( AL AR ULR LR DLR 6x]

rA A 2 2x

(- - e) M (hj - hM) + I Aj + q 6 D 6x'

F•. + QR Q + QM] x (44

= g 2 2 6t

5.1.2 Downstream boundary conditions.

With the equations of mass and momentum conservation given for

all subreaches, and with initial conditions specified as steady state with the

base flow, and with the upstream boundary condition given by the inflow hydro-

graph, the remaining factor governing the outflow hydrograph is the downstream

boundary condition at x = V.

A normal-depth stage-discharge relation there is given by

D A S0  (45)

in which S0 is the bottom slope.

. .*
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A broad-crested weir at the downstream boundary of a reach implies

critical depth on its crest. The depth y and discharge Q at the downstream

end of the subreach just upstream from the weir, of height p above channel

bottom, is given by the relation,

1/3 (6i-: Y ~2gA2  W+ 2= p+ 2(46)

in which BW is the breadth of the channel at the crest.

A critical-depth stage-discharge relation at the downstream boundary

implies the Froude number is unity there, i.e.,

2$2 Q2"
2 _ = 1 (47)

g A 3/B

* in which B is the top width.

5.1.3 Reduction of governing equations to nondimensional form.

Non-zero reference variables QO YO BO, XO, T0 with dimensions

3
* L /T, L, L, L, T respectively (L: length; T: time), but otherwise (momentarily)

*" undefined, are introduced. The following nondimensional variables are then

defined,

Q* = , q A* A h* = y__
Q0 Q0 /X 0  BY Y Y0

u* u Px* x_ t* ,W* p* p  (48)
QO/(Y 0 B0 ) X T 0 B (48)

in which W is wetted perimeter.

This allows Eqs. 43 and 44 to be written

+(Q1 * QR* (I *)(Qj* QM* qJM* 6x*)}BX- + 5x)+ (1- - +.-

B0Y0 I0 l

AI*AR* A*+AM*
R x...........- (49)

2 2
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2hL [A- hR* A 2* Q L *2J QR*

Bo~o2{e[ B AR o 2  L R*26*
0 B 0

Q0 
2 n 2 B 0

41/3 x0 D*6x*1 ( )(
LR- +73 (1 2R ( hM)

2______ ( QM*
_2 2 4/B)7 3B

+ ___ - + U 22 060 D M* 6x*]

B0~~~ 0. 3A* 2 UJ 00 0 0

-%X0 (QL* R Q + QR* - Q * (50)

It is now specified that Q03 Y0, and B 0 represent, respectively, base

flow, normal depth at base flow, and top width under base-flow normal-depth

conditions, and also, that

Y p
0

0  (51

in which S0 is a representative bottom slope of the channel. This makes

dimensionless slope unity,

dz* S
S 0 =1 (52)

dx* 0 0A0

*Further, the characteristic time is set to the value

To=00 (53)
0O

*Then the continuity and momentum equations can be written, respectively,

RC = (QL- QR + q ~* 6x*) + (1 - 0)(Q 3 - QM + qJ~ 6x*)

(A L* + A * AJ*+A*)L! 0(4
2 2 6t*
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[ AL* +AR 2 Q 2*2
= 2 (hL- hR) F A* R + ULR qLR* 6xM L R L* A R* L

LR 6x* + (1 O) J 2  (h* h* + IF*2j

+ UJ M * X SF Dj6x] F*2 QL* + QR* QJ* + QM* 6x

=0 (55) .1
in which two dimensionless parameters, a Froude number and a drag number,

characteristic of the channel under base-flow conditions appear,

2
2 Qo2

IF* 2 3 (56)
g B Y0

and

2 2Q02 n2 X0  2 .4/3 K 2  :

SF*= A (1) R*/(1) K* (1) (57)
F C 2B 2Y 1/

u 0 0

The dimensionless drag is computed in accordance with

Q2
D* = (58)

K ~
D

in which

K D 2  A* R*4 /3  (59)

Trhe dimensionless hydraulic radius is given in terms of the dimensionless

area and wetted perimeter,

A*

R* W* (60)

Numerical solution of Eqs. 54 and 55 was achieved by bringing the

residuals R and R close to zero for all channel elements in a reach at
C NI

. . ... .. A...2..... .
_,. . . i .. .: ...". ..... "..... . vv- -- """ ": """ " " -•--
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each time step while maintaining the specified relation between downstream

depth and discharge, Eqs. 63-65. In the present study,

RC < 10 -  (61)

RM < 10 - 4  (62)

5.1.4 Nondimensional downstream boundary conditions.

In terms of the previously defined dimensionless variables,

the normal-depth downstream boundary condition (Eq. 45) is given by the

equation

Q* =A* R*2131 SF* (63)

The critical-depth stage-discharge relation Eq. 47, expressed in dimension-

less terms is

I0 B* (64)

* whereas, the weir equation, Eq. 46, reduces to the following implied relation-

ship between dimensionless downstream depth and discharge,

$0*2 3 F2/3 ('.2/3 .

y* +IF * 2Q P* + IF* 2 . / (65)
0 2 2 B

5.1.5 Reduction of governing equations to differential form.

If none of the pertinent functions are discontinuous with

distance or time (no bores), Eqs. 54 and 55 can be reduced to partial differential

equations simply by division by Sx* and going to the limit as 6x* - 0,

St* - 0. The result is

.. Q* + 2A* q* 0 (66)-. " 3ax* at* ="

IF * 2  DQ* q* 2 F**hA* + S*D*= 0 (67)
0 at* A.2 - u* a F

the form of Eqs. 1 and 2, when tributary inflow q* is negligible.

t.................... . . . .
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5.2 The zero-inertia equations.

As the Froude number characteristic of the channel under base flow

conditions is reduced, the importance of the inertial terms (in parentheses,

on the left side of Eq. 67) declines. As an approximation, if1F* is set to

zero in Eqs. 67 or 55, the so-called zero-inertia or equilibrium model (because

.- pressure, weight, and drag forces are in equilibrium) results. This is a com-

bination of the continuity equation, Eq. 66 or its elementary-volume-integrated

counterpart,Eq. 55, and the partial differential equation,

a*
A* + S D* =0 (68)

or its elementary-volume-integrated counterpart.

5.3 The normal-depth kinematic-wave model.

If, in addition, the depth gradient is much smaller than the bottom

slope, it too may be neglected. Then Eq. 68 becomes

Q.2
A* (69)

"" A* 
"

or

Q*= KYVSF* (70)..

a normal-depth stage-discharge relationship. This, inserted into the continuity

* equation Eq. 66 or 55 yields one kind of kinematic-wave model.

5.4 Kinematic-wave models.

S.4.1 General theory.

In the material following, the symbols can be understood to

represent either real physical variables or their dimensionless counterparts.

A kinematic-wave model results when any stage-discharge relationship is

introduced into the continuity equation. For example, if a relationship

between discharge and cross-sectional flow area is known

% %i

........,' ...vv',...>.'--....-.-.:--.....-........,....-.-.-... ..-.--...... ,- ....
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Q = Q(A,x) (71)

• "for each point along a river (not necessarily prismatic) and this is inserted

into the continuity equation,

aQ(x,t) A (72)ax at q (2

the result is

aQ(x,t) 1 aQ(x,t)x +-= q  (73) "
ax t at

in which,

3= Q(A,x) (4W = (74)
DA,

Introduction of an orthogonal s-n coordinate system inclined at some angle

a(x,t) (see Fig. 4) to the x-axis allows Eq. 73 to be written

as ax an 9-x w as a-t an T" =  (5

in which

as an as an
cos a; - = _ sin a; *Tss = sin a; tjn = cos a (76)

tn s .

SS

Fig. 4. Characteristic coordinates.

Then

(cos a + I sin a) a- (sin a- -cos a) q (77)
w as an

If for each pair of coordinates x,t a is chosen such that

*. . . . . . .. . . . . . . . . . . . . . . . . . .

* :. *.,' -a . ..- .. *. ... . . . . . . . - .-.

C * t - . . .S * *
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tan a (78)

w

with w dependent upon the relationship between q and A at that x and t, then

the coefficient of Q/Dn in Eq. 77 vanishes and the latter becomes the

ordinary differential equation

2 Q2 ~[1 + tan2a] _- sec a q (79)
ds sc ds C (

with the differentiation performed with respect to arc lengthsalong a curve

inclined everywhere at the local value of slope 1/w. Now along such a curve

(see Fig. 5),

dQdQds 1 (80)
dt ds dt sin a ds

":j dt

dx
Fig. 5. Relation between increments of x, t, and s.

Consequently Eq. 79 can be written

dQ _ q 3Q(A,x) (81)

dtA

the differentiation valid along a so-called characteristic curve on which

dx _ )Q(A,x) (,." - (82) ,
.dt

Physically, these equations can be interpreted as stating that the discharge

at a cross section moving with velocity w increases at the rate wq. In a

flow with no tributary inflow, the discharge across such a moving section

remains constant:

dQ 0 (83)
.:: dt .

If in addition the channel cross section and roughness distribution

therein is the same at all stations, as in the present study, the characteristic

.. . . . . . . . . . . .

. . . . . . . . . .

K~ i"-; -'-% i>-i-. .. . ..-. . . . .. ' >-> : > i " ."-." . " ° .- :-5"> ?: .' . .-
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XI x
Fig. 6. Network of characteristic lines in a prismatic channel with no

tributary inflow.

curves are all straight lines and so form the basis of a very simple computa-

tional technique. With Q(A) known, w is known for every point on the inflow

hydrograph and (straight) characteristic curves may be drawn extending from

the t axis as shown in Fig. 6. Along any one of those lines, Q remains con-

stant at the value set by the inflow hydrograph, at the point of emanation

of the line from the t axis. Thus the hydrograph at stations such as x1 can

be computed.

5.4.2 Kinematic shocks.

Evidently, with a rising inflow hydrograph and w =aQ/A

an increasing function of Q, the characteristic lines converge, and if the

channel is long enough, intersect. Such an intersection constitutes a kine-

matic shock. From the standpoint of kinematic-wave theory, i.e., with strict

adherence to the Q(A) relationship given a priori, a kinematic shock is simply

a discontinuity in water-surface elevation and discharge--an abrupt wave front

moving at the velocity

2 1,,ws12 A 2  A A1 ( 4

• . :_ . ,:. :, . • . y - . . . . .
- -

" - .. .. . . . I
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WS1-2
4

3<

W.

W2.

x

Fig. 7. Formation and propagation of a kinematic shock.

* as found from elementary mass-conservation considerations. The subscripts

2 and I refer to the high and low sides of the shock, respectively, as in

Fig. 7. As can be seen from Fig. 7a, the shock speed lies between the indi-

vidual velocities of propagation of the two component discharges

wI < Ws < w2  (85)

Q W

2
I

W S
'WI

Fig. 7a. Shock speed ws compared to wave speed w.

5°
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The discontinuity propagates at this speed, intersecting, successively,

characteristics each carrying its own value of discharge. Thus, in Fig. 7,

between points S12 and S1, the discontinuity has Q on its low (downstream)

side and Q2 on its high (upstream) side. Between S13 and S14 it has Q, on

its low side and Q on the high side; Q2 has disappeared from the wave. With

Q4 < Q3 representing the falling limb of the hydrograph, it is apparent that

the peak value Q3 has disappeared from the floodwave by point S 14 In this

way it is seen that kinematic waves can attenuate, as they propagate, through

" the mechanism of the kinematic shock.

This phenomenon is complicated by the presence of flood plains. A

typical Q(A) relation for this case can be seen in Fig. 8.

2-

ow w

0 I 2 3 4 5
t A

BANK FULL

Fig. 8. Discharge-area relation for channel with floodplains.

The resulting array of characteristic lines is seen in Fig. 9. Evident are

both the extreme dispersal of the wave as it enters the flood plains and the

two shocks, one positive, one negative.



-43-

6

t

2

tQ

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig. 9. Characteristics and shock trajectories in channel with floodplains.

5.5 Modified-Puls technique.

The Modified-Puls technique couples a given relationship between

storage S in a reach and outflow QR from the reach with an expression of

mass conservation in the reach. The latter, nothing more than an integral of

Eq. 66 over the length of the reach, and over an increment of time 6t, can

* be written

fe(Q 1 - + (1 - O Q QN)]6t = SLR SJM (86)

In Eq. 86 S is the storage in the reach at the end of the time increment,~LR

and S JM is the storage at the beginning of the time increment; the weighting

factor 0 is normally taken 0 = 1/2. The quantities Q', QM' and S are known

from initial conditions or from computation of the previous time step. The

inflow hydrograph gives Q[, and the given storage-outflow relation yields

thc necessary equation to close the system

SI =S(Q (87)

allowing solution for QR '

.....................................................-...-.... ..... -. . '.. ... :.. .- +i
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The form of these governing equations is unaffected if the symbols are

meant to represent dimensionless rather than dimensioned quantities.

In a variation of the scheme, L and R, and J and M, represent cross sections

bounding a subreach. Then a sequence of solutions of Eqs. 86 and 87 is made

* at each time step, starting with the upstream-most subreach and progressing

to the last one in the reach, Qof one subreach comprising QL of its downstream

R L'

* neighbor.

In the particular variant used in this study, total reach storage was com-

* puted for reach outflow, and this total storage was apportioned uniformly

amongst the subreaches, all of equal length. When the water-surface profile

from which reach storage was determined corresponded to uniform flow--a normal

condition for long, prismatic reaches--the Modified-Puls equations 86 and 87

. °.

agre ith the kntic-wagvenn equations 72 ana71ewted no tiutr inlow;ar

the l e r h......
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0. Graphical Presentation of Data

6.1 Organization.

Results of the routing analyses are shown on Figs. 10-27. All of

tile graphs are in terms of dimensionless time, flow, and discharge as described

in sections 2 through 4. Peak discharges (Qm*) are plotted on Figs. 10-15,

peak stages (ym*) on Figs. 16-21, and time of arrival of peak discharge (tqm*)

on Figs. 22-27. These variables are plotted vs. distance down the channel

(x). Within each set, the first three figures are for the rectangular channel,

and the second three for the channel with flood plains. Within each group of

three, the first is for a normal depth downstream boundary condition, the

second for a weir downstream boundary condition, and the third for a free-

overfall downstream boundary condition. There are several graphs for each

channel configuration representing various inflow hydrograph rise times (tQp*);

these are distinguished hy a letter (e.g., 10c). Table 2 provides a con-

-enient way of identifving which conditions are presented on which graphs.

"-" (6.2 Conten ts. "

Plotted on each graph are one or more continuous lines which depict

the solution of the fu Il St. Venant equations for various Froude numbers (IF*).

Thcse lines represent the "true" solutions at different Froude numbers. Note

that, by definition, the IF* = 0.0 line depicts the "zero inertia" solution.

When solutions with different Froude numbers are indistinguishable, a single

solution curve is shown and identified by all the Froude numbers for which it

;is calcilated. Absence of :i parameter value implies use of the standard value

IF1. 0.2 (see, e.g., Fig. 151,c) . Also shown is a I ine for the kinematic-

wave approx imat ion, abel ed "'kw' ". Solutions obtained by Modified Puls routing

are irdicated by symbols (squares, circles, triangles, etc.). Different symbols

.. . . . . . . . . . *

.
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represent different numbers (N) of subreaches for the Modified Puls technique.

Also shown are the corresponding dimensionless subreach lengths (6x*). When

a Modified Puls result is dependent upon the characteristic Froude number,

* that number is given followd by "(MP)" (see, e.g., Fig. lla,c).

All curves end at the downstream channel boundary x* = L* (see, e.g.,

Fig. 14d). Where necessary to prevent confusion, curves are labeled with L*

*(see, e.g., Fig. 22d).

The dashed curve labeled "wave speed" in Figs. 23-27 refers to the theoretical

time of arrival based on wave velocity as computed by the ratio of incremental

change in outflow to incremental change in storage per unit length, all computed

under steady flow conditions.

6.3 Variable definitions.

The following variables appear on the graphs:

IF* = Froude number characteristic of base-flow conditions

L* = dimensionless channel length

N = number of subreaches used in Modified Puls routing

Qm* maximum dimensionless discharge

tQ* = dimensionless time of arrival of Qm*

tQp* = dimensionless rise time of the inflow hydrograph

x* dimensionless distance down the channel

6x* = dimensionless subreach length

y * = dimensionless maximum stage

Refer to Sections 2 through 4 for definition and discussion of the dimen-

sionless variables.

6.4 Discussion.

Interpretation and discussion of the results presented on Figs. 10-27

may be found in Section 4, "Analysis of Results".

. . . . . . . . . . .. . . .. . .. .
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Table 2. Summary of Conditions Presented on the Figures

Type of Distance Downstream vs:
Downstream

Channel Boundary Arrival Time of
Shape Condition Peak Discharge Peak Stage Peak Discharge

Normal Depth Fig. 1ba-log Fig. 16a-16g Fig. 22a-22g -

Rectangular Weir Fig. hla-llf Fig. 17a-17f Fig. 23a-23f

Overfall Fig. 12a-12d Fig. 18a-18d Fig. 24a-24d

Normal Depth Fig. 13a-13g Fig. 19a-19g Fig. 25a-25g

Rectangular
with
Flood Weir Fig. 14a-14g Fig. 20a-20g Fig. 26a-26g

Plains

Overfall Fig. lSa-15e Fig. 21a-21e Fig. 27a-27e

......................................
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5 kw
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SYMBOL 8x N2
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* 0.2 20

0123 4 5

Fig. 10() Attenuation of discharge hydrograph peaks, rectangular

channel, normal depth downstream boundary condition.
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* 0.20 20
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Fig. 10 b Attenuation of discharge hydrograph peaks, rectangular

channel, normal depth downstream boundary condition.
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*Fig. IOC Attenuation of discharge hydrograph peaks, rectangular

channel, normal depth downstream boundary condition.
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*Fig. 10d Attenuation of discharge hydrograph peaks, rectangular

channel, normal depth downstream boundary condition.



- - - '- - -- - -- - - rr ~ r r

-52

0.2,0.5
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0m ~ MODIFIED PULS RESULTS

SYMBOL 8x *N
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Fig. 10e Attenuation of discharge hydrograph peaks, rectangular

channel, normal depth downstream boundary condition.
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Fig9. 10f Attentuation of discharge hydrograph peaks, rectangular

ch. nncil, normal depth downstream boundary condition.
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Fig. log Attenuation of discharge hydrograph peaks, rectangular

channel, normal depth downstream boundary condition.
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downstream boundary condition.



-56-

t~ 5.0 10 IO20

550.2 560.2

4 - 4 -

2 2 MODIFIED PULS RESULTS

SYMBOL 8 X N
1 .0 1

& 0.5 2
I + 0.25 4

0.10 10

Fi g. I I d-e Attenuation of discharge hydrograph peaks,

rectangular channel, weir downstream

bouindary condition.
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Fig. 11 f Attenuation of discharge hydrograph
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stream boundary condition.
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